Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 104(4-2): 045210, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781535

RESUMO

Numerous experiments on laser-driven proton acceleration in the MeV range have been performed with a large variety of laser parameters since its discovery around the year 2000. Both experiments and simulations have revealed that protons are accelerated up to a maximum cut-off energy during this process. Several attempts have been made to find a universal model for laser proton acceleration in the target normal sheath acceleration regime. While these models can qualitatively explain most experimental findings, they can hardly be used as predictive models, for example, for the energy cut-off of accelerated protons, as many of the underlying parameters are often unknown. Here we analyze experiments on laser proton acceleration in which scans of laser and target parameters were performed. We derive empirical scaling laws from these parameter scans and combine them in a scaling law for the proton energy cut-off that incorporates the laser pulse energy, the laser pulse duration, the focal spot radius, and the target thickness. Using these scaling laws, we give examples for predicting the proton energy cut-off and conversion efficiency for state-of-the-art laser systems.

2.
Rev Sci Instrum ; 92(9): 093302, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598491

RESUMO

Laser-based particle accelerators have been an active field of research for over two decades moving from laser systems capable of one shot every hour to systems able to deliver repetition rates in the Hz regime. Based on the advancements in laser technology, the corresponding detection methods need to develop from single to multiple use with high readout speed. Here, we present an online compact tracker of particles using scintillators with nine resolvable energy levels and a spatial resolution of 3.6 × 3.6 mm2 over the whole active area. This paper describes the design and construction of the detector, which is based on pixellated scintillators embedded inside an absorber matrix. The scintillator pixels are fiberoptically coupled to a camera system for online readout and analysis. Calibration with a radioactive source and first experimental data measuring laser accelerated ions at the PHELIX laser at GSI, Darmstadt, Germany, are presented and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...